Real-world tralokinumab use in dupilumab-experienced patients: a retrospective multi-center case series

Edward I. Herman, MD, PhD1; Jessica Burgy, MD2; Mona Shahrirai, MD3

1South Shore Dermatology Physicians, North Easton, MA; 2President, Columbia Dermatology, Columbia, SC; 3Assistant Clinical Professor of Dermatology, Yale University School of Medicine, New Haven, CT; Associate Director of Clinical Trials, CDD Research

Introduction
• Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease that negatively impacts the quality of life (QoL) of patients.
• There is still a need for treatment options that offer patients long-term disease control along with a favorable safety profile.
• Dupilumab, a monoclonal antibody (mAb) that targets IL-4Ra, blocking signaling of interleukin (IL)-13 and IL-4, is approved for the treatment of adults with moderate-to-severe AD in the US and EU.
• Tralokinumab, the first fully human mAb that specifically neutralizes IL-13, blocking its interaction with its receptor, is approved in the EU, UK, Canada, and the US for adults with moderate-to-severe AD.
 o Phase 3 trials showed tralokinumab provided significant improvements in AD severity and was well tolerated up to 52 weeks of treatment.
 o Head-to-head studies of these two biologics have not been performed, and real-world evidence of tralokinumab use in moderate-to-severe AD patients who were previously treated with dupilumab is limited.

Objective
To further characterize the efficacy and safety profile of tralokinumab by evaluating clinical findings in patients previously treated with dupilumab in routine clinical practice who were switched to tralokinumab.

Methods
Patients
• Adult patients with moderate-to-severe AD from dermatology practices in the US, that were previously treated with dupilumab, and subsequently switched to tralokinumab, were included.
• The healthcare providers at these sites recorded clinical information from these patients as part of their routine clinical practice.

Data collection
• Baseline characteristics data collected included:
 o History of previous treatments
 o Comorbidities
 o Morphologic and topographic AD phenotype
 o IGA and BSA prior to and at the time of initiating tralokinumab treatment
 o Disease duration
 o Duration of dupilumab treatment
 o Reason for dupilumab discontinuation
• Data collected related to tralokinumab treatment included:
 o Duration of treatment
 o Dose administered (i.e., on-label; every 4 weeks (Q2W)).
 o IGA
 o BSA
 o Patient-reported outcomes (PROs; e.g., Itch, clearance of erythema, treatment satisfaction)
 o Adverse events (AEs) possibly related to tralokinumab

Table 1. (A) Baseline characteristics and (B) outcomes on tralokinumab of nine dupilumab-experienced patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Ethnicity</th>
<th>IGA</th>
<th>BSA (%)</th>
<th>Duration of AD (yr)</th>
<th>Duration on dupilumab</th>
<th>Reason for dupilumab discontinuation</th>
<th>Duration on tralokinumab (mo)</th>
<th>Trals dosage</th>
<th>IGA</th>
<th>BSA (%)</th>
<th>Improvement in PROs</th>
<th>AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>48</td>
<td>White</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>Inadequately controlled AD</td>
<td>3</td>
<td>Q2W</td>
<td>0</td>
<td>0</td>
<td>Cleavage, hypopigment</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>45</td>
<td>White</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>6</td>
<td>Inadequately controlled AD</td>
<td>3.5</td>
<td>Q2W</td>
<td>2</td>
<td>6</td>
<td>Cleavage, ich</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>45</td>
<td>White</td>
<td>20</td>
<td>7</td>
<td>Unknown</td>
<td>2</td>
<td>Inadequately controlled AD</td>
<td>2</td>
<td>Q2W</td>
<td>10</td>
<td>10</td>
<td>Mild seborrheic plaques</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>45</td>
<td>White</td>
<td>2</td>
<td>6</td>
<td>Childhood</td>
<td>8</td>
<td>Inadequately controlled conjunctivae</td>
<td>4</td>
<td>Q2W</td>
<td>1</td>
<td>2</td>
<td>ICH, hypopigment</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>49</td>
<td>White</td>
<td>2</td>
<td>5</td>
<td>Childhood</td>
<td>6</td>
<td>Conjunctivae</td>
<td>2</td>
<td>Q2W</td>
<td>0</td>
<td>0</td>
<td>ICH</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>52</td>
<td>White</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Conjunctivae</td>
<td>3</td>
<td>Q2W</td>
<td>1</td>
<td>1</td>
<td>ICH</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>50</td>
<td>White</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>Joint pain</td>
<td>8</td>
<td>Q2W</td>
<td>2</td>
<td>0</td>
<td>ICH</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>32</td>
<td>White</td>
<td>25</td>
<td>7</td>
<td>Unknown</td>
<td>3</td>
<td>Injection site reaction</td>
<td>3</td>
<td>Q2W</td>
<td>0</td>
<td>0</td>
<td>ICH, hypopigment</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>52</td>
<td>White</td>
<td>7</td>
<td>12</td>
<td>Unknown</td>
<td>5</td>
<td>Anythony</td>
<td>5</td>
<td>Q2W</td>
<td>0</td>
<td>0</td>
<td>ICH</td>
<td>None</td>
</tr>
</tbody>
</table>

Values were clear at 1 month follow up. *Patient with clear and minor follow up: “Unknown” if related.

Results
Baseline Characteristics
• Baseline characteristics of the 9 patients included in the case series are shown in Table 1A.
• 4 (44%) patients reported experiencing plaques/classical AD, 6 (67%) reported previously using prednisone, and 5 (56%) reported having asthma as a comorbidity.
• Median (range) baseline IGA and IGA at time of tralokinumab administration were 3 (2-4) and 3 (2-4), respectively.
• Median baseline BSA and BSA at time of tralokinumab administration were 20% (4-50%) and 10% (1-50%) respectively.

Outcomes on tralokinumab
• All 9 dupilumab-experienced patients were administered on-label tralokinumab (Q2W for 8 patients, Q4W for 1 patient) and had been on tralokinumab for 2-8 months (Table 1B).
• At the time of data collection, median (range) IGA and BSA for these patients were 0 (0-3) and 0% (0-10), respectively.
• All patients experienced improvements in PRIDs (see examples in Figure 1).
 o 67% (6/9) of patients reported improvements in Itch with NRS scores of 0 or 1.
 o 44% (4/9) reported general clearance of AD signs and symptoms of AD.
 o 44% (4/9) reported their overall satisfaction of being on tralokinumab.
• AEs of conjunctivitis (2 patients) and joint pain (1 patient) completed respects in patients upon switching from dupilumab to tralokinumab.
• Residual signs and symptoms of AD following initiation of tralokinumab were managed with antihistamines (1 patient), topical IAK inhibitors (1), and prednisone (1).
• No AEs were reported except in 1 patient with possible mild seborrheic dermatitis/head-neck dermatitis eruption that was treated with topical, and 1 patient with herpes labialis (unrelated to tralokinumab treatment).

Conclusions
• This case series suggests that tralokinumab is a potential effective therapy in patients with moderate-to-severe AD who have failed dupilumab, due to lack of efficacy or AEs.
• Resolution of AEs of concern for biologic therapies for AD, such as conjunctivitis, was observed in patients upon switching from dupilumab to tralokinumab.
• Further studies are needed to elucidate if and how the different mechanisms of action of dupilumab and tralokinumab contribute to varying responses in patients.

Abbreviations
A: Atopic dermatitis, BSA: Body surface area, BSA, Body surface area (BSA), Body surface area (BSA), IGA: Investigator’s Global Assessment; Itch: Itch; ICH: Interstitial keratitis; LDT: Long-acting device; LDT, Long-term device; NRS: Numerical rating scale; PRIs: Patient-reported outcomes; Q2W: Every 2 weeks; Q4W: Every 4 weeks; yrs: Years.

References

Acknowledgments
The authors would like to recognize the work of the following individuals who contributed to each of the above studies: Drs. Abdullah Alharbi, Waleed Almulla, Stephen L. Paller, and Michael T. Walter.

Disclosures
1. This study received no extramural funding. 2. Mona Shahrirai, MD has received grants/research support from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma. 3. Mona Shahrirai, MD has received research support from: Galderma. 4. Mona Shahrirai, MD has received personal fees from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma. 5. Mona Shahrirai, MD has received speaking fees from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma. 6. Mona Shahrirai, MD has received consulting fees from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma. 7. Jessica Burgy, MD has received research support from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, and SanoPharma. 8. Jessica Burgy, MD has received personal fees from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma. 9. Jessica Burgy, MD has received consulting fees from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma. 10. Jessica Burgy, MD has received speaking fees from: Abbvie, Amgen, Celgene, Dermira, Galderma, Novartis, Pfizer, Roche, and SanoPharma.

Figure 1. Photographs of dupilumab-experienced patient #2 (A-C) and patient #3 (D) before and after initiating tralokinumab

A Before After
B Before After
C Before After
D Before After