Background

- Management of patients with melanoma involves multiple decision points during clinical care, all of which, in line with guidelines, should be aligned with a patient’s risk for poor outcomes. The 31-gene expression profile (GEP) was developed and validated to predict a patient’s risk of recurrence and further validated to precisely predict a patient’s individual risk for a positive SLNB.
- An SLNB risk threshold weighs surgical risks against those of missing a positive SLN. Current guidelines recommend a 5% risk threshold for considering SLNB in patients with cutaneous melanoma (T1a with high-risk features, T1a-HR-T4). 1,2
- A 5% threshold indicates that, in a group of 20 similar patients foregoing SLNB, 19 would have a negative result, with one missed positive SLN (19:1 negative:positive ratio). 2,3 Any novel test to identify patients who can forego SLNB should increase the ratio of negative-to-missed positive nodes (Figure 1).
- A second GEP test was developed to identify patients at low risk of SLN metastasis, CP-GEP, but is not available for survival prognostication. 11,12

Results

Clinical Impact and Objective

- Patient management decisions, including the decision to undergo SLNB, should be risk-appropriate to the individual being considered for treatment. Currently, national guidelines recommend patients consider SLNB when risk reaches a 5% threshold, broadly identified by T-stage (T1a with high-risk features and greater). Thus, by guidelines, an allowable threshold for true negatives to false negatives when foregoing SLNB is 19:1, and any test used to guide this decision should be superior to this benchmark.
- To compare the utility of the i31-GEP and CP-GEP for SLNB guidance with the current standard of care in T1b-T2 cutaneous melanoma.

Figure 2. Only the i31-GEP performs better than standard of care at identifying those who can safely forgo SLNB (T1b-T2)

<table>
<thead>
<tr>
<th>Test</th>
<th>TN</th>
<th>FN</th>
<th>Ratio (TN:FN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i31-GEP</td>
<td>134</td>
<td>5</td>
<td>30:1 (154:5)</td>
</tr>
<tr>
<td>Standard</td>
<td>19</td>
<td>1</td>
<td>19:1 (19:1)</td>
</tr>
<tr>
<td>CP-GEP</td>
<td>60</td>
<td>4</td>
<td>15:1 (60:4)</td>
</tr>
</tbody>
</table>

1: GEP results adapted from Whitman et al. JCO PO 2021 2: CP-GEP results obtained from Youssaf et al. JCO 2021 2: TN: True-negative, FN: False negative.

CP-GEP would miss more positive nodes per 100 ‘low-risk’ patients (n=6; 100/15) than using the current standard of 5% (n=5), while i31-GEP would miss less than the standard (n=3; 100/30) and half as much as CP-GEP.

Figure 1. Current guidelines suggest considering SLNB when the risk of a positive biopsy is ≥5% (T1a-HR-T4)

For every 20 similar patients who are eligible for SLNB, if you do not perform the SLNB...

- 19 patients would have had a negative SLN
- 1 patient would have had an undetected positive SLN
- 19:1 negative-to-missed positive ratio at 5% risk threshold

Any new test must do better than this when selecting patients to forego SLNB.

Conclusions

- Standard of care suggests that at a 5% risk threshold, for every 20 patients not getting an SLNB, one positive node will be missed (19:1 true-to-false negative). To be safe and clinically useful, any new test must do better.
- i31-GEP: 30:1 true-to-false negative SLNB ratio is better than using standard of care for identifying patients who may safely forego SLNB.
- CP-GEP: 15:1 true-to-false negative SLNB ratio is worse than using standard of care.
- The i31-GEP is the only test to offer both SLNB risk prediction and risk of recurrence, metastasis, or death prognostication.

Methods

- We compared the performance of two GEP tests, the i31-GEP (n=763) and the CP-GEP (U.S. validation cohort; n=153 [includes three T1a]),2 in patients with T1b-T2 tumors, with known SLNB results, to determine if either test increased the ratio of negative-to-missed positive nodes.

References

Acknowledgments & Disclosures

- Funding provided by Castle Biosciences.
- AJ and PP are on the speaker's bureau for Castle Biosciences. BM is an employee and stock and options holder at Castle Biosciences.

Abel Jarell, MD,1 Brian Martin, PhD,2 Peter Prieto, MD, MPH3
1Northeast Dermatology Associates, PC, Portsmouth, NH, 2Castle Biosciences, Inc., Friendswood, TX, 3University of Rochester Medical Center, Rochester, NY

The integrated 31-gene expression profile (i31-GEP) test for cutaneous melanoma outperforms CP-GEP at identifying patients who can safely forego sentinel lymph node biopsy.