Sarecycline Demonstrates Narrow-spectrum Antibacterial Activity and Anti-inflammatory Effect in Animal Models

Christopher Bunick1, James Del Rosso2, Stephen Tying3, Michael Draper4, Jodi L. Johnson5, Ayman Grada2

1Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA, 2JDR Dermatology Research LLC/Thomas Dermatology, Las Vegas and Henderson, Nevada, USA 3University of Texas Health Science Center, Department of Dermatology & Center for Clinical Studies, Houston, TX, USA, 4Paratek Pharmaceuticals, Inc. (at the time of the study), Boston, -Massachusetts, USA, 5Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, USA, *R&D and Medical Affairs, Almirall (US), Exton, Pennsylvania, USA

Introduction

- Sarecycline is an FDA-approved tetracycline-class oral antibiotic specifically developed for the treatment of moderate-to-severe acne vulgaris.
- In vitro studies demonstrated a narrow-spectrum antibacterial activity, targeting clinically relevant Gram-positive bacteria while showing reduced activity against Gram-negative bacteria commonly found in the human gastrointestinal tract.
- Here we report results of in vivo antibacterial and anti-inflammatory studies in mouse and rat models.

Methods

In vivo antibacterial activity

Table 1. A murine systemic (intraperitoneal) infection model was utilized to assess the in vivo efficacies of sarecycline, doxycycline, and minocycline against *S. aureus* RN450-1 and *E. coli* PBS1478.

Table 2. A murine neutropenic thigh wound infection model was utilized to represent a tissue-based infection to assess the comparative efficacies of sarecycline and doxycycline against *S. aureus* RN450-1.

Anti-inflammatory effect In vivo

Table 3. To evaluate the anti-inflammatory effects of sarecycline, a carrageenan-induced rat footpad edema model was utilized. Male, Sprague Dawley rats were intraperitoneally injected with saline, sarecycline, or a positive control (doxycycline or minocycline) and inflammation was determined as change in paw volume. Percent inflammation was calculated as 100 x (post paw volume at 3 hours – pre paw volume at 0 hours)/pre paw volume at 0 hours).

Results

Results - Table 1. Efficacy of sarecycline and comparators against *S. aureus* and *E. coli* in mouse

<table>
<thead>
<tr>
<th>Antibacterial</th>
<th>S. aureus RN450-1</th>
<th>E. coli PBS1478</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent</td>
<td>MIC (μg/mL)</td>
<td>PD50 (mg/kg)</td>
</tr>
<tr>
<td>Sarecycline</td>
<td>< 0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>< 0.06</td>
<td>0.3</td>
</tr>
<tr>
<td>Minocycline</td>
<td>< 0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

MIC – minimum inhibitory concentration; PD50 – protective dose required to achieve 50% survival

Discussion

- Sarecycline is the first narrow-spectrum tetracycline-class antibiotic to be developed for the treatment of acne vulgaris.
- Sarecycline proved effective against *S. aureus* (G+ Bacteria) in both systemic and tissue-based infection models in mice. However, low efficacy was demonstrated vs. *E. coli* (G- enteric bacteria).
- The reduced activity of sarecycline against bacteria commonly found in the gut suggests reduced risk of antibiotic resistance within the GI tract microbiome.
- The anti-inflammatory effect of sarecycline in rats is similar to doxycycline and minocycline, and in agreement with sarecycline being efficacious for inflammatory moderate-to-severe acne lesions in humans.

Conclusions

- Sarecycline demonstrated in vivo efficacy against *S. aureus* but not *E. coli* in animal models of infection, in agreement with the narrower-spectrum of activity observed in *in vitro* studies.
- Sarecycline showed anti-inflammatory effect comparable to doxycycline and minocycline in the rat footpad edema model.

Poster accepted for Winter Clinical Dermatology meeting 2021.

Corresponding email: Grada@bu.edu