Avoiding the Danger of Rising Resistance in Cutibacterium acnes: Criticality of Benzoyl Peroxide and Antibiotic Fixed Combinations

Mahmoud Ghannoum, PhD^{1,2}; Ahmed Gamal, MD¹; Ahmed Kadry, MD^{1,3}; James Q. Del Rosso, DO⁴⁻⁶; Christopher G. Bunick, MD, PhD⁷; Linda Stein Gold, MD⁸; Leon H. Kircik, MD⁹⁻¹¹; Julie C. Harper, MD¹²

1Case Western Reserve University, Cleveland, OH; 2University Hospitals Cleveland Medical Center, Cleveland, OH; 3Al-Azhar University, Cairo, Egypt; 4JDR Dermatology Research/Thomas Dermatology, Las Vegas, NV; 5Advanced Dermatology and Cosmetic Surgery, Maitland, FL; 6Touro University Nevada, Henderson, NV; ⁷Yale Department of Dermatology and Program in Translational Biomedicine, New Haven, CT; ⁸Henry Ford Hospital, Detroit, MI; ⁹Icahn School of Medicine at Mount Sinai, New York, NY; ¹⁰Indiana University Medical Center, Indianapolis, IN; ¹¹Physicians Skin Care, PLLC, DermResearch, PLLC, and Skin Sciences, PLLC, Louisville, KY; ¹²Dermatology & Skin Care Center of Birmingham, Birmingham, AL.

SYNOPSIS AND OBJECTIVE

- Topical antibiotics such as clindamycin are often used to treat acne; accordingly, dermatologists prescribe almost 5% of all antibiotics, though they account for <1% of the US physician population¹
- Resistance to topical antibiotics in Cutibacterium acnes (C. acnes)—the bacteria involved in acne pathogenesis—was first reported in the US in the 1970s²
- Since then, several countries have reported >50% of *C. acnes* strains as resistant to certain antibiotics^{3,4}
- This emergence of resistant strains can lead to increased therapeutic failure⁵
- Combination formulations containing an antibiotic and the antimicrobial benzoyl peroxide (BPO) may reduce the risk of resistance, especially with prolonged use^{6,7}
- This four-part study tested susceptibility of *C. acnes* strains and the development of resistance to antibiotics alone or in combination with BPO

METHODS AND RESULTS

Study Overview

The study comprised 4 parts, with 31 individual strains of *C. acnes* evaluated (Figure 1)

FIGURE 1. Study design

^aClassification based on Fitz-Gibbon S, et al. J Invest Dermatol. 2013;133(9):2152-60. "Neutral" are reported to cause acne but also colonize normal skin, "acne-associated" colonize skin with acne, and "healthy" colonize healthy skin. ssified as acne-associated. Comprising 6 branded products or products in de CLIN 1.2%/adapalene 0.15%/BPO 3.1% (Ortho Dermatologics), CLIN 1% gel (Ortho Dermatologics), CLIN 1.2%/BPO 3.75% gel (Ortho Dermatologics), Minocycline 4% foam (Journey Medical Corporation), CLIN 1.2%/BPO 5% gel iefel Laboratories), erythromycin 3%/BPO 5% gel (Ortho Dermatologics). IN, clindamycin phosphate; BPO, berzoyl peroxide.

Part 1: C. acnes Sensitivity to Antibiotics

- C. acnes susceptibility to antibiotics was assessed via minimum inhibitory concentration (MIC) values obtained from epsilometer tests
- MIC is the lowest concentration of an antibiotic needed to inhibit bacterial
- Lower MIC indicates higher antibiotic susceptibility
- All antibiotics tested (erythromycin, clindamycin, doxycycline, and minocycline) had similar MIC ranges, indicating similar activity against most *C. acnes* strains tested
- Erythromycin had higher (worse) MIC_{90} , the lowest concentration required to inhibit 90% of strains tested, compared to other antibiotics
- Five C. acnes strains had elevated MIC to multiple antibiotics tested, an indication of resistance

Part 2: C. acnes Sensitivity to Antibiotic Formulations +/- BPO

- C. acnes strains

Part 3: Effect of Clindamycin + BPO on C. acnes Inhibition

- Microscopic images from a separate in vitro experiment confirmed this finding (Figure 3)

